
-j.; 77 -777 j

___ Paallel ystem

__~~~, cnerae vautino

4 45

* ~ I A Lab)ratory Opr4-n1~*

APPRVED OR PBLICRELE 4E1.

DRBTION UNLsae opaIE

--------------------------------- 8 9024 27 01

/

This report was submitted by The Aerospace Corporation, El Segundo, CA

90245, under Contract No. F04701-85-C-OO86-PO0019 with the Space Division,

P.O. Box 92960, Los Angeles, CA 90009-2960. It was reviewed and approved for

The Aerospace Corporation by A. J. Schiewe, Acting Principal Director,

Computer Science Laboratory.

Lt C. A. Warack, SD/CNDA, was the Air Force project officer for the

Mission-Oriented Investigation and Experimentation (MOIE) Program.

This technical report has been reviewed and is approved for publication.

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.

C.A aak t, USAF S A. BERESLt Col, USAF
MOIDE Project Officer rector, APSTC West Coast Office
SD/CNDA AFSTC/WCO

-,-. .I 4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
TR-0088(3920-05)-3 SD-TR- 88-109

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Aerospace Corporation (If appicable) Space Division
Laboratory Operations [

5c. ADDRESS (City, State, end ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Los Angeles Air Force Base

El Segundo, CA 90245 Los Angeles, CA 90009-2960

S.. NAME OF FUNDING/SPONSORING Sb, OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

I _F04701-85-C-0086-PO019

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11, TITLE (Include Security Clasfication)
Integrated Evaluation of Parallel Systems

12. PERSONAL AUTHOR(S)
Kesselman. Carl F.: Gorlick. Michael M.: Bannister..Joseph A.

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year Month, Day) 15 PAGE COUNT
FROM TO 1988, December, 19 I 37

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and dentify by block number)
FIELD GROUP SUB-GROUP Dependability Gauge Performance

Error insertion HERMES evaluation
Fault tolerance Parallel processing Simulation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Parallel (multiple-processor) computer systems are used to meet requirements for high
performance. Multiple processors can also be used to achieve dependability through fault
tolerance; however, the mere presence of more than one processor does not guarantee depend-
ability. Where there are requirements for both high performance and dependability, the
prudent designer of dependable parallel systems must judiciously balance both requirements.

The Computer Science Laboratory of The Aerospace Corporation has developed a sophisticated
approach, based on simulation, that is more flexible, accurate, and cost effective than other
approaches for investigating -how dependability and performance interact. We define the
nature of the analysis problem, and we discuss our approach to measuring performance and
evaluating dependability in a single environment through the use of two of our integrated
tools, HERMES and Gauge.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OIIuNCLASSIFIED/UNLIMITEO 0 SAME AS RPT 0--ITIC USERS Unclassified

22a. NAME Of RESPONSIBLE' INDIVIDUAL I22b- TE'LEPHONE (include Area Code) I22€ OFFICE SYMBOL

DO FORM 1473.94 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSI PIED

Preface

The authors gratefully acknowledge the contributions of Mel Cutler, Mark

Joseph, David Lee, and Mike Meyer in the preparation of this report. In

addition, the authors thank Eugene D. Brooks III for providing the Cer-

berus Multiprocessor Simulator. and the Free Software Foundation fnr their

cooperation in the retargeting of GCC.

AcceSSion For

NTIS GRA&I
DTIC TAB

Unannounced Q
Justificat to

By

Distribut-ionI
Availabitty Codes

Dist Special

...l ii l Iilll i m ll mn

2

Contents

Preface 1

1 Introduction 5

2 Using Simulation to Evaluate the Performance and Depend-
ability of Parallel Systems 7

2.1 Evaluating Performance 9

2.2 Evaluating Dependability 11

2.3 The Need for Integrated Tools16

3 Tools for Evaluating the Performance and Dependability of
Parallel Systems 19

3.1 HERMES19

3.2 Gauge 23

4 Related Work 31

5 Conclusion 33

References 35

3

List of Figures

1 Hierarchical Approach to the Simulation of Injected Errors 13

2 The Structure of Gauge 23

3 Control Panel for Performance Analysis 25

4 A Typical Experiment Specification 29

4

4

1 Introduction

Space Division (SD) plans to meet its projected need for a high level of
computational performance by using parallel-processing (multiple-processor)
computer systems. Parallel systems are well suited for this purpose, since
multiple processors can often improve the rate of processing over that ob-
tained by traditional uniprocessor systems. Parallel systems, because they
can provide redundancy, also have the potential for improving dependabil-
ity. This report proposes a new, integrated approach to evaluating both the
performance and dependability of parallel systems.

For the purposes of this discussion, we use the the definition of dependabil-
ity given by Avi.ienis and Laprie [1]: "Dependability is that property of a
computer system that allows reliance to be justifiably placed on the service it
delivers [original emphases]." Dependability is a qualitative property consist-
ing of the following components: reliability, availability, readiness, maintain-
ability, testability, and safety. We are particularly interested in systems that
achieve their dependability through fault tolerance. Looking again to [1],
we define fault tolerance as a means "... to provide, by redundancy [original
emphasis], service complying with the specification in spite of faults having
occurred or occurring." If a system is dependable, it has a high probability
of delivering a service within a given time after a request.

Unfortunately, when high-performance parallel systems must also be depend-
able, requirements for both performance and dependability can conflict. The
prudent designer must be able to make the tradeoffs that lead to a judicious
balance of both qualities for each application.

The level of effort necessary to design and validate parallel systems has in-
creased considerably over that required for the less complex systems of the
previous generation. Parallel computing systems (called "embedded" when
they are highly integrated, autonomous parts of larger systems) may have to
perform functions requiring several hundred million instructions per second
(MIPS) and have unattended lifetimes of up to ten years. In general, com-
mercial parallel computing systems (for example, the Sequent Symmetry) are
used for interactive or numerical computing. Not only are the performance
burdens on these systems less than is expected for systems that interest SD,

5

but commercial systems can be maintained, and be repaired when they fail.

It is essential that fault tolerance be designed into a system at all levels, from
primitive circuit elements up to - and perhaps beyond - the program level.
Unfortunately, the techniques for designing dependable, high-performance
computing systems, particularly for optimizing system software to take full
advantage of parallel processors, have not kept up with technology. There
is an unmet need for tools and techniques to evaluate both the performance
and fault tolerance of new designs.

Our research in the Computer Science Laboratory (CSL) of The Aerospace
Corporation focuses on developing simulation-based tools for evaluating the
performance and fault-tolerance characteristics of parallel embedded systems.
We propose to develop an integrated tool suite that permits the designer or
researcher to perform in-depth studies of how well a system performs and
tolerates faults.

Our approach to system evaluation is unique in how it addresses the following
issues:

" We consider the evaluation of performance and fault tolerance as an
integrated process.

" We use actual, not modeled, code to study how software and hardware
interact.

" We provide an integrated environment for performing experiments, an-
alyzing data, and displaying results.

The remainder of this report is organized as follows. In Section 2 we illus-
trate the need to integrate the evaluation of performance with that of fault
tolerance, and propose an approach based on the efficient simulation of a
computer system with its actual software. In Section 3 we describe HERMES

and Gauge, tools for the integrated evaluation of performance and fault tol-
erance. In Section 4 we cite efforts related to our work, and we present
conclusions in Section 5.

6

2 Using Simulation to Evaluate the Perfor-
mance and Dependability of Parallel Sys-
tems

Requirements for the dependability and performance of computer systems
are interdependent. Limited resources of space, power, and weight must be
carefully allocated to achieve fault tolerance and high performance simul-
taneously. For example, fault-tolerance requirements for a microprocessor
may mean that less chip area is available for on-chip cache memory, thus
decreasing processor performance. Also, software devoted to fault-tolerance
functions appropriates processor cycles that would otherwise be devoted to
application software. An extreme but useful example is the SIFT (Software-
Implemented Fault-Tolerance) computer, a fault-tolerant avionics processor
whose fault-detection and fault-recovery mechanisms reduced its performance
by half [2].

The complex nature of a computer system makes its performance difficult to
predict. At unpredictable points an increase in the processing load can result
in a severe degradation in system performance; the added demands of fault
tolerance can leave an embedded system with insufficient computing reserves
to respond adequately to a high-priority request.

For example, real-time systems have performance requirements that specify
the maximum acceptable frequency at which response-time violations may
occur. The incorporation of fault-tolerance features such as software con-
sensus mechanisms [3], automatic assertions [4], and recovery blocks [5] in-
evitably increases the chances that response-time violations will occur. The
occurrence of an error - although a relatively rare event - also promotes the
missing of deadlines. Additionally, an error tends to cause a number of succes-
sively missed deadlines. The limit on the number of successive response-time
violations is an often-neglected component of real-time performance require-
ments. Simulation can expose those errors that produce unacceptably long
sequences of violations in the modeled system.

By observing the performance characteristics of a program while testing
its fault-tolerance properties, we can compare the performance of the origi-

7

nal program with that of the fault-tolerant version, thereby quantifying the
tradeoff of performance for dependability. It is important to compare per-
formance in both the absence and presence of errors.

It is possible to evaluate the performance and dependability of a system in
three fundamental ways. (1) Test a system empirically by physically induc-
ing faults or errors and observing the system's response. (2) Predict the
reliability of a system by analyzing mathematical models. (3) Simulate the
fault modes of a system and the ways in which fault-tolerance mechanisms
react to these modes.

The empirical approach (benchmarking on actual hardware) can provide a
high degree of accuracy and confidence in the results. However, it is costly
and often comes too late in the design cycle to be of use; this is especially
true of limited-production systems. Moreover, technical problems, such as
the injection of faults into an integrated circuit, often make the empirical
approach infeasible. Mathematical modeling can be applied to systems prior
to their construction. However, mathematical modeling often makes simplis-
tic assumptions about how the real system operates, and results must be
interpreted judiciously. There is also a limit to the level of detail that can
be modeled analytically; the analysis must typically be performed at a very
high level because low-level analysis is intractable.

To date, simulation has not been widely used to evaluate dependability, but
there are strong indications that simulation will be fruitful in aspects of de-
pendability evaluation that are now neglected. Simulation is also an excellent
technique for gaining insight into the critical performance parameters of a
computer system: its speed, resource utilization, and efficiency. Simulation
not only can predict the performance of proposed computers, but also can
provide critical information on aspects of existing systems that are difficult
or even impossible to measure directly. This includes the study of error
detection and recovery, which have proved difficult to analyze.

Given the high degree of detail necessary to model how errors propagate,
simulation is the method of choice. The simulation of computer systems can
range from the gate level up to high-level behavior, encompassing a single
processor or a complete computer system. We are currently focusing on the
instruction-level simulation of parallel-processing systems, emphasizing the

8

performance and accuracy of the simulation.

In Sections 2.1 and 2.2 we discuss our approach to using simulation to explore
issues related to both performance and dependability, respectively. We end
in Section 2.3 with a discussion of the need for a set of integrated tools.

2.1 Evaluating Performance

The design of a computer architecture for an embedded system is concerned
with a single problem: to obtain the maximum performance within the design
constraints of a given application. Determining the performance of a com-
puter system for a specific application requires that any simulation of the
embedded system account for the whole system: processors, memory, buses.
system software, application software, and error-recovery mechanisms.

Appropriate conclusions can be drawn from simulation data only when ap-
propriate input data are provided to the simulation. Traditionally. one mea-
sures system performance by executing a random sequence of instructions
selected from an instruction mix. An instruction mix (for example, the Gib-
son mix [6]) is chosen to represent all of the applications a computer might
perform. Other mixes (for example, the DAIS [Digital Avionics Information
System] mix [7]) are designed to represent a specific class of applications.

However, the simulation of a random collection of machine instructions does
not indicate how a computer system will perform when executing the instruc-
tion sequence generated by a specific program with specific input data; thus
generalized instruction mixes are inappropriate for measuring the actual per-
formance of an embedded computer system. For example, a computer might
have a slow instruction-execution rate (in MIPS) but have a fast floating-
point operation rate (as measured in millions of floating-point operations per
second, or MFLOPS). In this computer, the performance of operating-system
functions would be poor relative to that of matrix multiplication.

The number of simulated instructions executed is also important. The more
instructions executed, the more valid the simulation results. A good example
of this is the difference between warm-start and cold-start performance in
a cache memory. The length of the simulation run must represent actual

9

patterns of system use.

Our approach to simulation takes advantage of the fact that embedded sys-
tems, though demanding, are focused on well-defined applications. Given the
specifications of a particular application, we can model it under a variety of
scenarios:

9 The system software exists and we want to see if the proposed archi-
tecture is adequate.

e The system hardware is designed and the system software is being
developed.

* The system hardware is designed, the system software exists, and we
need to improve performance (via "what-if" experiments).

* The system hardware is designed, the system software exists, and we

want to determine if performance requirements are met - without re-
sorting to benchmarks that may be expensive or impossible to perform.

* The system hardware is designed, the system software exists, and we
want to observe how the system performs in the presence of faults.

In all of the above cases, actual application software and actual input data
are used. The data are collected and analyzed, and the performance of the
system as a whole - both hardware and software - is then determined.

However, the utility of simulation is limited if the simulated execution of a
program takes several orders of magnitude longer than the actual execution.
The simulated execution of a parallel application further increases (by at least

an order of magnitude) the time required for the simulation. By optimizing
the performance of the simulator, we can increase the size and detail of our

simulations.

We can obtain a iigh degree of simulator performance by combining state-of-
the-art hardware with the latest software techniques. We strive to obtain a
one-to-one ratio of actual execution time to simulated execution time. When
simulating a multiprocessor architecture, we execute the simulator itself on
a multiprocessor. We have already constructed a prototype simulator for the

10

Generic VHSIC (Very High-Speed Integrated Circuit) Spaceborne Computer
(GVSC) chip set (8]. Preliminary results show that we can simulate the MIL-
STD-1750A instruction set at a rate of about 0.150 MIPS, 1/30 the rate of
the actual chips.

2.2 Evaluating Dependability

Several tools for dependability modeling are currently available. Unfortu-
nately, the most commonly used - ARIES 82 [9], CARE III [10], HARP [11],
and SHARPE [12] - do not provide estimates of coverage, a figure of merit
for how well mechanisms detect and recover from faults or errors; indeed,
these tools typically require that the user provide coverage as an input pa-
rameter, and coverage has proven particularly difficult to estimate. Realizing
that the term coverage has both a quantitative and a qualitative sense, we
propose a technique for evaluating the coverage provided by various error-
detection and recovery mechanisms. This report illustrates the proposed
technique with regard to determining qualitative coverage; however, the tech-
nique may be extended to determine quantitative coverage as well.

Coverage at the programming level depends on how well a computer program
recognizes that an error has occurred, what it does to contain the spread
of the error, and how effectively it recovers from the effects of the error.
Because the design of fault-tolerant programs is not yet well understood,
many fundamental questions must be answered before software with the high
levels of dependability required by current and projected SD applications can
be designed. A few of the most important questions include the following:

e What types of errors are statistically most likely to appear in a given
combination of hardware and software?

o What is the impact of a particular type of error on various computer
programs?

* How do errors propagate through a computer system?

* What kinds of program constructs (data and control structures) are
most susceptible to errors?

11

* What performance penalties are paid by fault-tolerant programs, and
how will the occurrence of an error affect real-time performance?

Answering each of these questions is a significant task in its own right. V'-
discuss these questions in detail below.

Since it is not the case that every error in the state of a computation will
invalidate the results of that computation, one of the most challenging prob-
lems of designing for fault tolerance is how to characterize accurately those
errors that cin occur without disrupting correct processing. Simulation ex-
periments can reveal the set of error patterns that a program might en-
counter, as well as the probability of their occurrence. Once these have been
identified, we can select and evaluate the appropriate error-detection and
correction mechanisms.

Drawing from earlier work [13,141, we take a hierarchical approach to such ex-
periments (see Figure 1), modeling each level of the system in turn. Different
fault or error models must be tailored to each level. Adjacent levels are re-
lated to each other by an abstract mapping (which is typically not one-to-
one) that translates error patterns at the lower level to error patterns at the
next higher level. For example, the fault model at the gate level might be
based on stuck-at faults; at the next higher level, the register transfer level,
these faults can map to invalid operations or erroneous register contents. We
point out that this hierarchical approach does not require traditional mixed-
mode simulation; rather than simulating higher and lower levels alternately,
it extracts error-pattern frequencies exclusively from the lowei level and uses
these frequencies as inputs to the next higher level. While some detail is
thus sacrificed, the overall advantages of this approach are that we avoid the
technical difficulty of precisely relating one mode of simulation to another,
and we are able to run simulations more rapidly than before.

Given a model for a level, as well as an error set and its associated probabil-
ities of occurring at that level, we can use a mapping to inject likely errors
into the next higher level. This leads to a new error set appropriate to the
next level. In turn, this process can be repeatedly applied to ever higher lev-
els. For example, at the hardware level we simulate the gate-level operation
of a chip. First, by using plausible statistical distributions to estimate the

12

Level of Simulation Injected Errors/Faults

Parallel Program Data Structure
Execution Model anld Control

(HERMES) Errors

Map

Register Transfer Register and
Model Function
(ISPS) Errors

Map

Gate-Logic Stuck- at
Model Faults

(Zycad)

Figure 1: Hierarchical Approach to the Simulation of Injected Errors

13

type and location of faults in the chips under study, we inject stuck-at faults
where they are most likely to occur. This step involves an approximation of
reality, since our limited knowledge of what causes faults in a chip forces us
to conjecture about the likelihood that a particular location on a chip will be
afflicted by a given fault. Second, we collect statistics about the error pat-
terns that would occur in the actual chip. Third, by simulating a collection
of such chips at the register-transfer level, we collect statistics about error
patterns that manifest themselves in entities visible to the programmer (for
example, in general-purpose and floating-point registers, memory locations,
and fixed- and floating-point arithmetic units). Finally, these error patterns
form the error set of the hardware/software interface.

By adopting a hierarchical approach, we break a complex problem into a
number of simpler problems. Clearly, performing a number of simulation
experiments at each level is far less costly than attempting to model such
high-level behavior as program execution in terms of such low-level behavior
as gate operation.

However, when the hierarchical approach is used, accuracy is sacrificed for
speed. The experiments at each level are run independently of experiments
at other levels. Even though separate levels are rarely independent, we pos-
tulate that their interdependence is weak, and that it can be accounted for
through the statistical characterization of error patterns projected from a
given level to the next higher level. The assumption that levels are, for all
practical purposes, independent is necessary if we are to make any progress
in estimating coverage.

Another area of research investigates how specific programs axe affected by
similar errors. As different programs use hardware resources in different ways,
it is reasonable to expect different programs to behave differently when they
are subjected to various types of errors. We propose to study two distinct
aspects of this phenomenon:

" How does a program react to different kinds of errors?

* How do different kinds of programs react to the same kinds of errors?

Exhaustive testing inherently injects errors that, although they have specific

14

effects, remain statistically insignificant. Therefore we are interested primar-
ily in investigating those classes of errors that manifest themselves at the
program level; that is, by using statistical analysis, how can we determine
which faults are most likely to affect critical parts of a running program?

By observing a simulated behavior in the presence of an injected error, we
have the opportunity to compare the tested program with an identical pro-
gram that executes in a fault-free environment. This provides a wealth of
data suitable for statistical analysis, such as the following:

" The elapsed time from the manifestation of a lower-level error to the
manifestation of an error in the computation

" The elapsed time from manifestation to detection (for those programs
that have error-detection mechanisms)

" The most likely program state to be affected

" The rate at which the injected error spreads

" The probability that the injected error will cause an error in the pro-
gram

This simulation approach, of injecting errors and analyzing their effects sta-
tistically, is ideal for enabling us to understand how software executes in
parallel architectures.

Although not all faults and errors have effects at the program level, it is
extremely important to contain or minimize the effects of those that might.
The occurrence of an error in the execution of a program can cause undesir-
able changes in that program's state; these changes, which result when an
erroneous value is stored into the program's variables, can propagate to var-
ious degrees, and have a spectrum of effects - from merely incorrect values
that are never subsequently read, to programs whose harmful effects spill
over into other programs. As it is virtually impossible to design systems able
to deal with all eventualities, it is important to determine which errors must
be contained or minimized. By understanding the rate and extent of error
propagation, we are better able to design firewalls to contain errors.

15

1

As some errors are inevitable in any system, programming techniques such
as control-flow checking [15,16], assertion-based value checking [4], N-version
programming [31, and recovery blocks [5] have been developed to detect and
contain errors manifested at the program level. Our simulation approach
permits us to evaluate not only the effectiveness of these techniques for fault
tolerance, but also their impact on the performance of a specific application.

2.3 The Need for Integrated Tools

As our primary concern is the mutual performance and dependability of
multiple-processor systems in the presence of faults, the technical issues
raised by the simulation of fault tolerance - error injection, the timing of
error detection, the performance of error-recovery mechanisms, and the trac-
ing of how incorrect data values propagate - must be taken into account by
tools also concerned with the classical measurement and analysis of software
performance. Given the variety of performance issues, the varying levels of
detail, and the intertwining of fault-tolerance considerations throughout, it
is hard to imagine a single tool that could treat all aspects of system perfor-
mance in the presence of faults.

Also, as the number of experiments can be large (a fault-tolerance study can
require thousands of different experiments), careful record keeping is required
to correlate software and hardware changes with experimental results. This
makes some form of integrated, automated assistance a necessity.

We view transparent tool intercommunication and experiment design and
management as the primary means of presenting the user with an environ-
ment that automatically integrates data-collection tools with data-analysis
tools. A single high-level description of an experiment - which can consist
of varying combinations of performance-data specification, data input to the
simulation, data collection, data reduction and analysis, and varying configu-
rations of parameters - relieves the user of the burden of specifying low-level
details. Given multiple tools, data sharing and tool intercommunication are
unavoidable. An ideal analysis system must rely on a versatile yet integrated
set of tools. Uniform methods for storing and retrieving information are
obvious and necessary precursors of this integration.

16

The following section elaborates on two principal tool sets, HERMES and
Gauge, that meet these requirements.

17

18

3 Tools for Evaluating the Performance and
Dependability of Parallel Systems

Automated aids are essential for dependability studies. For reasons of mod-
ularity and flexibility, we have separate tools for simulation and the organi-
zation, management, and analysis of resulting data.

Simulations are performed by the High-performance Extensible Retargetable
Multiprocessor Emulation System (HERMES), an architecture simulator being
implemented by CSL. HERMES can measure both performance and fault-
tolerance properties simultaneously.

Experiments are controlled and data are managed by a single system also
being developed by CSL. This system, called Gauge, uses a high-level speci-
fication of experiments to control simulations under HERMES and other tools.

Both HERMES and Gauge run under the UNIX1 operating system on a wide
variety of hosts, including the Sun workstation, the DEC VAX,2 the Sequent
Symmetry,3 and the Encore Multimax.'

3.1 HERMES

HERMES is an environment for software development and architecture simu-
lation (or emulation). One executes a simulation under HERMES in a man-
ner similar to executing a program on any computer system. Programs are
written in a high-level language, then are compiled and linked to create an
executable program comprised of the instruction set of the simulated target
architecture. The executable program and the operating system are loaded
into the simulated memory, the machine state is initialized, and the program
is executed.

The core of the HERMES system is an instruction-level simulator that accounts
1UNIX is a registered trademark of AT&T.
2VAX is a trademark of Digital Equipment Corporation.
-Symmetry is a registered trademark of Sequent Computer Systems Corporation.
'Multimax is a trademark of Encore Computer Corporation.

19

for the details of a specific implementation of a specific instruction set. A
different emulator is custom built for each implementation of an instruction
set. For example, we are currently developing simulators for the MIL-STD-
1750A instruction set as implemented by the GVSC chip sets.

The four characteristics of HERMES - its high performance, its extensibility,
its retargetability, and its ability to emulate parallel processors - are detailed
as follows:

High Performance HERMES is built around a high-performance software
emulator that executes programs developed for parallel and fault-toler-
ant execution. This emulator is based on the techniques developed at
Lawrence Livermore National Laboratory for the Cerberus multipro-
cessor simulator [17]. The emulator is designed to achieve MIPS rates
as fast as 1/20 the speed of the actual hardware when executing on
that hardware. HERMES itself is written to be executed in parallel.
thus adding to the speed at which it can execute simulations. For this
purpose CSL uses the Sequent Symmetry, a state-of-the-art commercial
parallel processor.

Extensibility HERMES instruction-level simulators can be combined with
other simulation modules to simulate a complete parallel-processing
system. HERMES can simulate a large number of different architectures
based on a single processor. For example, one can study how varying
the number of independent memory banks in a shared-memory parallel
processor affects the performance of a specific algorithm. We can also
easily change the processor being modeled by substituting one processor
simulator for another.

Retargetability Because we want to study the effects of different instruc-
tion sets on performance, the software development tools in HERMES
(the compiler, assembler, linker, and loader) must be easily adapt-
able, or retarnetable, to new instruction sets. The compiler and assem-
bler used in HERMES have already been retargeted to four different in-
struction sets (DEC VAX, National Semiconductor NS32032, Motorola
M68020, and MIL-STD-1750A).

20

HERMES supports the C programming language directly. The FOR-
TRAN programming language is provided by a commercially avail-
able FORTRAN-to-C translator. The HERMES C compiler 118] per-
forms most well-known global-optimization techniques and peephole
optimization in a completely machine-independent manner. The code
generated by this compiler is superior to that generated by many com-
mercial compilers. New instructions can also be easily added, facilitat-
ing the study of the effect of minor changes in the instruction set of the
processor being simulated. Also, pipeline scheduling, crucial for the
efficient operation of RISC-type (Reduced Instruction Set Computer)
processors, will be added to the compiler in the near future.

Multiprocessor Emulation To simulate more than one processor simul-
taneously, HERMES maintains individual states for each instantiation of
the emulator. Interactions between processors are modeled exactly. not
probabilistically. This modeling precision provides the most accurate
data possible on actual program operation. For example, if a processor
needs to obtain a lock that is already being held, the amount of time
the requesting processor must wait is determined by the time at which
the holding processor releases the lock.

In addition, one can program parallel algorithms by using architecture-
independent extensions [19] to the C programming language. These
extensions enable one to write a parallel program that uses a variety of
parallel-programming constructs (for example, locks, barriers, message
passing, and shared memory).

Clearly HERMES is well suited for studies of the total execution time of par-
allel, fault-tolerant systems. However, HERMES also provides for a variety of
other useful measurements. It is not the purpose of HERMES to provide an ex-
haustive set of measurements; rather, it implements only those measurements
that are most critical and do not significantly slow down the simulation. Al-
though this obliges the researcher to discover how best to extract complex
performance parameters from data that can be gathered efficiently, HERMES
can execute much larger simulations than are possible with other tools. For
example, the HERMES compiler can instrument a program by strategically
placing counters and instructions to increment the counters. After the pro-

21

gram has executed, the values of these counters can be used to determine
the execution times of various parts of the program [20]. Not only does this
result in less interference with the program, but it also does not significantly
slow down the emulator. Similar techniques can be used for fault-tolerance
and hardware-performance measures.

HERMES obtains performance data by using four built-in mechanisms: a
simulation clock, counters, shadow store, and special-purpose instructions.

Simulation Clock During the simulation HERMES maintains a clock for
each processor. For every instruction executed, this clock is incre-
mented by an appropriate amount - possibly even zero. An incre-
ment of zero enables one to manipulate the simulation from within the
program, without affecting visible behavior.

Counters For software studies HERMES provides a program with counters
to record the occurrence of a variety of events. These counters are in-
cremented and read by means of additional machine instructions that
execute in zero simulated time. Counters can be used to obtain infor-
mation about many aspects of the program being studied.

Shadow Store For studies of how hardware operates at the instruction
level, HERMES "shadows" every storage element in the programming
model. This shadow store is used to maintain information about the
corresponding storage. For example, when a hardware error occurs, the
emulator marks the erroneous value by setting a bit in the correspond-
ing shadow store. This "error" bit is propagated to other shadow stores,
thus paralleling the propagation of the original error. This is a valuable
technique for determining how well fault-tolerance mechanisms contain
errors. In addition to tracing single bits, the shadow-store technique
can provide information on other aspects of a system (for example, the
number of times registers are accessed and updated).

Special-Purpose Instructions As HERMES was designed to be flexible,
adding new instructions to the emulator is straightforward. For ex-
ample, one can simulate the effect of an error in a functional unit by
using a new "mutated" instruction in place of the original one; this

22

can be used to produce the same effect as the compiler-induced muta-
tions of [21]. When combined with shadow store, the use of mutated
instructions is an extremely powerful technique.

3.2 Gauge

Gauge is an environment for controlling multiple simulators, recording ex-
perimental data, and analyzing the results [22]. The structure of Gauge is
illustrated in Figure 2. Gauge distinguishes between the platform under test
(some combination of hardware and software whose performance is the sub-
ject of investigation) and the environment (the probes and tools) used to
analyze the platform.

The programmer communicates with the platform via Gauge, sending exper-
iments to the platform and receiving results in reply. A standard interface
defines the instrumentation and communication services that Gauge expects
the platform to support. Experimental data are collected by the execution
of an instrumented program (instrumentation is fully automatic). That pro-
gram executes on a platform modified to generate the required measurements.

The key features of Gauge are summarized below.

Multiple Shared Data Bases Gauge provides a simple but extremely pow-
erful data-base facility that allows tools to create, modify, share, and
destroy data bases freely. Data bases and directed streams attached to
data bases are the only means of intertool communication. The data
bases contain all information of interest to Gauge. By creating new
data bases from old, the user obtains different views of performance or

Gauge Platform
Experimentsj

Platform -Gauge
Analyst--

Interface Rsts [Interface

Figure 2: The Structure of Gauge

23

fault-tolerant behavior. Data bases may be read and written as ASCII
files, permitting Gauge to communicate with other tools or environ-
ments.

Tool Integration Gauge provides as a basic service the integration of goal-
directed tools. First the user states, in a declarative manner, the de-
sired effect; then Gauge automatically plans and executes a network of
tool invocations to achieve that effect. As new tools are added to the

Gauge environment, they are automatically taken into account during
the planning phase. New tools can be added and old tools changed
without concern for their impact on other tools in the environment.

Experiments Gauge is designed to be a hospitable environment for con-
ducting, recording, and analyzing performance and fault-tolerance ex-
periments. This includes a high-level language for the design and spec-
ification of performance and fault-tolerance experiments; tools for con-
ducting and controlling experiments; and simple, standard interfaces
for downloading experiments onto platforms and obtaining results in
turn. The mechanisms of Gauge encourage the building of specialized.
easily interconnected performance-analysis tools that can either gener-
ate experiments themselves or take advantage of experimental results.

Data Reduction Gauge includes standard tools for a variety of analyses
that commonly arise in performance and fault-tolerance studies. The
tools cover basic descriptive statistics, multivariate linear regression,
correlation, and sensitivity. Other tools provide graphics for the display
of experimental data (a variety of graphics formats are available). In
particular, Gauge can succinctly display performance data from several
hundred processors simultaneously.

Interactive Exploration Gauge is conducive to the interactive exploration
of performance data. It automatically tracks and checkpoints each data
tour, allowing a user to pursue an interesting side issue without losing
the main trail of investigation. The entire state of the analysis can be
saved and later restarted at the point of interruption.

Graphics All of Gauge is driven by convenient menus and control panels.
Gauge includes a menu compiler that allows the user to expand the

24

I

* Zoom Sa Nso.o.,,.r°,-. E ,estore H*,.og,,,, Clear., Selected,0 Unzoom

* Linter

o Logritluo Histogr.. Subset Now Svstm Previous Histogram
0 Bin

Unbin Statistie

5000 I0000 150000 200000 250000 300000
uniFw'2
uni fw

3

member/2

member _cheek/2

well.tpe.term/5
extract-variablefrom-term/4
free_ovariable/2
1ntquosIt11tV e*_*tis1fied/1

extract-v.riablesfrom-term/3

free-of-variable/3
w@elL_t pe_ternV4
solve.I nequali ties/3
1nequl &i tiesfromcl1use.bodV6

initialize.variabletwpee/2
inequaiitie1_from_goai/7
relax-mingleI nequalit~yi
twpe-oF- 11 tore/4

termto-specVifer/2
inequal itiesfrom..cluse-heed6

Inequal Ities-From-prograVm5
inequalities Fromxclsuse/6

Histogram of swatem tWpe.Lnferencer
Sorted bw descending order in x axis

Figure 3: Control Panel for Performance Analysis

interface to include new tools or options and a control-panel compiler
that allows the user to create specialized control panels for specific
analyses. Menus and control panels may be nested, permitting the user
to build on existing interfaces. The menu and control-panel compilers
accept a descriptive language that describes the use of the interface.
Issues of graphic presentation and organization are dealt with by the
compiler. A sample control panel for performance analysis is shown in
Figure 3.

Below we discuss two of the most important aspects of Gauge, tool integration
and experiment management.

25

The analysis of performance data can be very complex, because of the diver-
sity of performance data and their interrelationships. Gauge provides an au-
tomatic integration mechanism, called Protean, for performing experiments
and analyzing the results.

Traditionally, the addition of each new analysis tool requires one to consider
how the new tool interacts with all other tools in use; from the user's point of
view, each new tool entails yet another set of conventions to memorize and
master. With Gauge, however, Protean also standardizes the interaction
between tools, allowing new tools to be integrated easily.

We strongly believe that users should obtain results by simply describing their
intent, and that it is the responsibility of the environment to construct and
execute a detailed plan for attaining that goal. Protean is driven entirely by a
set of transformation rules that describe the input/output relations of tools;
its behavior is changed by the substitution of one set of rules for another.
Embedding a new tool inside Gauge means adding one or more transforma-
tion rules. From the descriptions given by the transformation rules. Protean
automatically weaves together a directed network of tool invocations that
manage sequencing, interconnectivity, and intertool communication.

Since Protean is the sole interface to the tool-composition services of Gauge.
it encourages a high degree of tool modularity. Furthermore, because Pro-
tean allows tools to be easily and automatically connected to other tools for
services, each individual tool can be more specialized. Protean synthesizes
large tools from small subtools, connecting them via a uniform strategy.

One benefit of this scheme is the elimination of unnecessary duplications.
For example, with Protean all tools share a common, interactive graphics
interface (itself just a collection of Protean-mediated tools) or a set of basic
statistics tools. Furthermore, since any individual tool is likely to be smaller
and less comprehensive than it might be in a less integrated environment, we
have greater confidence in its correctness.

Finally, Protean encourages the rapid prototyping of new tools, since users
are able to either build upon or adapt existing tool fragments. One can
combine old tools in new ways by modifying the transformation rules that
describe the behavior of these tools. In particular, an analyst can seriously

26

consider building specific tools for system- or application-dependent experi-
ments and measures (for example, those dealing with correlating error recov-
ery with paging).

The analyst interacts with Protean by stating his needs as relations that
Protean tries to satisfy. The relation

histogram (vork, procedure- (execut iont ime/procedure))

produces a histogram of the execution times of all procedures called by the
procedure work and its descendants. Protean produces the display by string-
ing together nine tools to compute the reflexive and transitive closure of the
call graph of work, interpret the performance results from the latest experi-
ments, and extract the histogram. From Protean's point of view, performance
experiments are simply a binary relation between an experiment and a set of
results that is satisfied by downloading the test code to the platform, running
the test program, and uploading the measurements.

Relations are implemented as tools that accept data bases as inputs and
produce data bases as outputs. They are narrow and highly specialized -
each is designed to do one job extremely well. Tools are ignorant of the
source of their inputs and indifferent to the destination of their outputs. No
input is ever changed, and any side effects that tools produce are local to
their outputs. To give an idea of the scope and construction of these tools,
we present two examples below.

1. The histogram-display tool is responsible for displaying a histogram
on a bit-mapped display. Its input is a data base that refers to zero
or more instances of the relation X-Y, where X is any datum (usually a
string denoting the name of a procedure) and Y is always a number. The
tool's output is a window that contains the display of the histogram
described by the input data base.

2. The ref lexive-transitivecl osure tool computes the closure of the
call graph of a procedure P by recursively collecting the contents of the
call graph of P and its descendants.

27

Gauge mediates all performance and fault-tolerance experiments. The user
controls a platform via requests to Gauge. Gauge in turn interacts with the
platform by constructing an experiment, a data base given to the platform
for interpretation that describes the design and results of a test. The design
of a performance experiment has three parts:

e a description of the components of the software under test that specifies
how they are combined to form a complete working system;

* the environment of the test [for example, the nature of the processor(s),
the quantity of memory, the memory allocation policies, the type and
connectivity of communication streams]; and

* a definition of the test case.

A typical experiment specification is shown in Figure 4.

Experiment results have two parts. The first part specifies the environmental
values that were finally obtained for the experiment. The initial environment
of the experiment may have given some leeway (for example, by stating that a
range of three to five megabytes of memory was sufficient for an experiment).
The environment portion of the results informs Gauge of the amount of
memory that was finally allocated for the experiment, say four megabytes.
The second part consists of the platform-dependent measurement data.

Experiments and results are transferred between Gauge and the platform in
a simple ASCII format consisting of sequences of name/value pairs. Stan-
dard routines are used on both sides to translate to and from the external
representation. All phases of the experiment are recorded in data bases for
future reference or reuse. Portions of earlier experiments can be combined
to construct new experiments, or old experiments can be rerun to validate
results. Gauge automatically catalogs and indexes all the information and
data pertinent to an experiment, leaving the analyst free to concentrate on
interpretation and diagnosis.

28

% System Description
softvare(attitude-control).
version(3.5).
release(2a) .

% Test Environment
processor (honeywell (gvsc)).

nodes (8).
topology (hypercube).

% Test Case
measure(bustraffic).
units (words/second).
input(testfile_007).

Figure 4: A Typical Experiment Specification

29

30

4 Related Work

Although it is a considerable advance in the state of the art, the work and
approaches described above draw upon a large body of recent research and
tools. We have built HERMES upon the foundation provided by Cerberus (17],
and have rewritten about 95% of the original software. Also, with the ex-
ception of the simulation clock, we have added all of the performance anal-
ysis features described in this report. The Rice Parallel Processing Testbed
(RPPT) [23) is a simulation-based tool for evaluating the performance of
parallel C programs. RPPT uses "execution-driven" simulation, which has
a coarser granularity than HERMES's finer-grained "instruction-driven" sim-
ulation. This difference makes HERMES better suited for dependability eval-
uation than RPPT.

HERMES significantly extends the work of Hua and Abraham (211, who evalu-
ated the fault-tolerance properties of self-checking programs by using muta-
tions of program statements to mimic the injection of hardware faults. The
program flow monitor, another example of program-level fault tolerance, was
studied by Schuette and Shen [15], who used physical fault injection; we
plan to repeat the analogous simulation version of such real-life experiments
and compare our results with theirs. The Fault Injection-based Automated
Testing (FIAT) environment [24 injects representative error patterns into
executing real-time distributed software. FIAT has been implemented for er-
ror injection into physical hardware, and its primary use is to test an actual
system for fault-free behavior. However, FIAT does not cleanly integrate
the evaluation of performance and dependability as does HERMES. Further-
more, it is unclear how FIAT generates representative error patterns, since
there is no notion comparable to the hierarchical fault/error mapping used
by HERMES. Presumably, in FIAT one must have a very clear concept of
which errors one expects to see, whereas in Gauge the error patterns can be
based upon the underlying physics of the hardware being modeled.

A variety of monitoring systems have been developed in response to the need
to analyze the performance of multiple-processor systems. Close in structure
to the combination of HERMES and Gauge is IE [25], an integrated instru-
mentation environment for multiprocessors. Like Gauge, HE acknowledges

31

that the requirements of a performance-analysis environment are distinctly
different from those of most programming environments, it emphasizes ex-
periment management as a fundamental contribution of performance analysis
environments, and it uses data bases as the common glue that unites analy-
sis tools. However, Gauge differs significantly from IE in three ways. First,
Gauge makes available a much wider variety of analytic and graphics tools
than IIE. Second, the Gauge data-base model is potentially much richer than
the model adopted by IE (see [26]). Finally, Gauge's novel use of Protean
as a central organizer makes it possible to change the underlying tool set
with an unusual ease and economy of expression; the flexibility and power of
Gauge in this respect exceed considerably that of other similar tools known
to us.

32

5 Conclusion

Because system performance and dependability are related, the complete
analysis of these qualities must be performed in an integrated manner. CSL
has developed, and is refining, tools for this purpose. These tools, HERMES

and Gauge, work together, providing the system designer with previously
unobtainable information about system performance and dependability.

The features of these tools can be summarized as follows:

* HERMES makes large experiments feasible by providing high-performance
multiprocessor emulation with facilities for error injection and tracing.

" HERMES has a retargetable compiler and a modular emulator that to-
gether permit the consideration of alternative architectures and orga-
nizations.

" Gauge provides the analyst with intellectual control over the experi-
ments and assistance in running them and collecting results.

" Gauge provides a uniform set of facilities for data collection, analysis,
and display. These facilities also provide for the easy integration of new
and existing tools.

The above tools must be used intelligently and the results analyzed carefully.
However, with the information these tools provide, the system designer can
judiciously trade off different processors, system architecture, and software
to meet specific requirements for performance and dependability.

33

34

References

[1] A. Avi~ienis and J.-C. Laprie, "Dependable Computing: From Concepts
to Design Diversity," Proceedings of the IEEE, Vol. 74, pp. 629-638, May
1986.

[2] J. H. Wensley et al., "SIFT: Design and Analysis of a Fault-Tolerant
Computer for Aircraft Control," Proceedings of the IEEE, Vol. 66,
pp. 1240-1255, October 1978.

[3] A. Aviiienis, "The N-Version Approach to Fault-Tolerant Software,"
IEEE Transactions on Software Engineering, Vol. SE-11, pp. 1491-1501,
December 1985.

[41 D. M. Andrews. "Using Executable Assertions for Testing and Fault Tol-
erance," in Proceedings of the Ninth International Fault Tolerant Com-
puting Symposium, pp. 102-105, June 1979.

[5] B. Randell, "System Structure for Fault Tolerance," IEEE Transactions
on Software Engineering, Vol. SE-1, pp. 220-232, March 1975.

[6] J. C. Gibson. "The Gibson Mix," IBM Report TROO.2043, IBM, June
1970.

[7] "AN/AYK-15A Development Specification," Wright-Patterson Air
Force Base, Ohio, April 1979. Air Force Wright Aeronautical Labo-
ratories Document Number SA421205.

[8) W. R. Iversen, "Control Data Launches CMOS/SOS Space Computer,"
Electronics Magazine, pp. 27-28, July 10, 1986.

[9] S. V. Makam et al., "UCLA ARIES 82 Users' Guide," Technical Re-
port CSD-820830, UCLA Computer Science Department, Los Angeles,
California, August 1982.

[10] J. Stiffler et al., "CARE III Final Report, Phase I," NASA Contractor
Report 159122, NASA Langley Research Center, November 1979.

35

[11] S. J. Bavuso et al., "Analysis of Typical Fault-Tolerant Architectures
using HARP," IEEE Transactions on Reliability, Vol. {t-36, pp. 176-
185, June 1987.

[12] R. A. Sahner and K. S. Trivedi, "Reliability Modeling Using SHARPE,"
IEEE Transactions on Reliability, Vol. R-36, pp. 186-193, June 1987.

[13] J. Abraham et al., "Application of Fault Tolerance Technology," techni-
cal report, The Aerospace Corporation, El Segundo, California, October
20, 1987.

[14] M. K. Joseph and J. Bannister, "Coverage Estimation and Validation."
technical report, The Aerospace Corporation, El Segundo, California,
August 5, 1988.

[15] M. A. Schuette and J. P. Shen, "Processor Control Flow Monitoring Us-
ing Signatured Instruction Streams," IEEE Transactions on Computers,
Vol. C-36, pp. 264-275, March 1986.

[16] S. S. Yau and F.-C. Chen, "An Approach to Concurrent Control Flow
Checking," IEEE Transactions on Software Engineering, Vol. SE-6.
pp. 126-137, March 1980.

117] E. D. Brooks III, T. S. Axelrod, and G. A. Darmohray, "The Cerberus
Multiprocessor Simulator," in Proceedings of the Third SIAM Confer-
ence on Parallel Processing, 1987.

[18] R. Stallman, Internals of GNU CC. Free Software Foundation, 1988.

[191 J. Boyle et al., Portable Programs for Parallel Processors, (New York,
New York: Holt, Rinehart and Winston, Inc., 1988).

[20] M. M. Gorlick and C. F. Kesselman, "Timing Prolog Programs With-
out Clocks," in Proceedings 1987 Symposium on Logic Programming,
pp. 426-432, IEEE Computer Society Press, 1987.

(21] K. A. Hua and J. A. Abraham, "Design of Systems with Concurrent
Error Detection Using Software Redundancy," in Proceedings of the
ACM/IEEE Fall Joint Computer Conference, (Dallas, Texas), pp. 826-
835, November 1986.

36

122] M. M. Gorlick and C. F. Kesselman, "Gauge: A Workbench for the
Performance Analysis of Logic Programs," in Proceedings of the Fzjth
International Conference on Logic Programming, MIT Press, August
1988.

[23] R. C. Covington et al., "The Rice Parallel Processing Testbed," Perfor-
mance Evaluation Review, Vol. 16, pp. 4-11, May 1988. Special Issue on
the 1988 ACM SIGMETRICS Conference on Measurement and Model-
ing of Computer Systems; May 24-27, 1988; Santa Fe, New Mexico.

[24] Z. Segall et al., "FIAT - Fault Injection Based Automated Testing
Environment," in Proceedings of the 18th International Fault-Tolerant
Computing Symposium, (Tokyo, Japan), pp. 102-107, IEEE Computer
Society, June 1988.

[25] Z. Segall et al., "An Integrated Instrumentation Environment for Mul-
tiprocessors," IEEE Transactions on Computers, Vol. C-32, pp. 4-14,
January 1983.

[26] R. T. Snodgrass, "A Relational Approach to Monitoring Complex Sys-
tems," ACM Transactions on Computer Systems, Vol. 6, pp. 157-196.
May 1988.

37

LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for

national security projects, specializing in advanced military space systems.

Providing research support, the corporation's Laboratory Operations conducts

experimental and theoretical investigations that focus on the application of

scientific and technical advances to such systems. Vital to the success of

these investigations is the technical staff's wide-ranging expertise and its

ability to stay current with new developments. This expertise is enhanced by

a research program aimed at dealing with the many problems associated with

rapidly evolving space systems. Contributing their capabilities to the

research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
chemistry, chemical dynamics, environmental chemistry, trace detection;
spacecraft structural mechanics, contamination, thermal and structural
control; high temperature thermomechanics, gas kinetics and radiation; cw and
pulsed chemical and excimer laser development including chemical kinetics.
spectroscopy, optical resonators, beam control, atmospheric propagation, laser
effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and
radiative signatures of missile plumes, sensor out-of-field-of-view rejection,
applied laser spectroscopy, laser chemistry, laser optoelectronics, solar cell
physics, battery electrochemistry, space vacuum and radiation effects on
materials, lubrication and surface phenomena, thermlonic emission, photo-
sensitive materials and detectors, atomic frequency standards, and
environmental chemistry.

Computer Science Laboratory: Program verification, program translation,
performance-sensitive system design, distributed architectures for spaceborne
computers, fault-tolerant computer systems, artificial intelligence, micro-
electronics applications, communication protocols, and computer security.

Electronics Research Laboratory: Microelectronics, solid-state device
physics, compound semiconductors, radiation hardening; electro-optics, quantum
electronics, solid-state lasers, optical propagation and communications;
microwave semiconductor devices, microwave/millimeter wave measurements,
diagnostics and radiometry, microwave/millimeter wave thermionic devices;
atomic time and frequency standards; antennas, rf systems, electromagnetic
propagation phenomena, space communication systems.

Materials Sciences Laboratory: Development of new materials: metals,
alloys, ceramics, polymers and their composites, and new forms of carbon; non-
destructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; analysis and evaluation of materials at
cryogenic and elevated temperatures as well as in space and enemy-induced
environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric
and ionospheric physics, density and composition of the upper atmosphere,
remote senr'.g using atmospheric radiation; solar physics, infrared astronomy,
infrared sigaature analysis; effects of 5olar activity, magnetic storms and
nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.

